Airborne Multi-Gas Sensor, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has developed a fiber-coupled implementation of TT-FMS that leverages telecommunications lasers as sources and WiFi electronics for signal processing. With this approach, sensitive trace gas detection in a robust, compact and low-power package has been achieved. In work to-date, we have demonstrated the capability of this TT-FMS concept in a single channel. In the proposed project, we aim to demonstrate multiplexing of TT-FMS to provide simultaneous, real-time measurement of carbon dioxide (CO2) and methane (CH4). In addition to demonstrating the extensibility of TT-FMS, the Phase I project would address key performance limitations encountered in early feasibility work. The objectives of Phase I are to: - Implement and test polarization management during phase modulation to reduce baseline variation induced by observed in previous work, - Build a two-channel TT-FMS with breadboard components, - Establish baseline (single-channel) performance of TT-FMS when polarization maintaining phase modulation is included, - Calibrate and evaluate the full AMGUS (two-channel, TT-FMS) apparatus. Accomplishment of Phase I objectives would yield a benchtop technology ready for transition to a UAV-compatible AMUGS prototype in Phase II.

Primary U.S. Work Locations and Key Partners

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Management	1
Project Transitions	2
Images	2
Technology Maturity (TRL)	2
Technology Areas	2
Target Destinations	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Mesa Photonics, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Continued on following page.

Small Business Innovation Research/Small Business Tech Transfer

Airborne Multi-Gas Sensor, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Mesa Photonics, LLC	Lead Organization	Industry	Santa Fe, New Mexico
• Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Primary U.S. Work Locations	
California	New Mexico

Project Transitions

O

June 2014: Project Start

December 2014: Closed out

Closeout Summary: Airborne Multi-Gas Sensor, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/140580)

Images

Briefing Chart Image

Airborne Multi-Gas Sensor, Phase I (https://techport.nasa.gov/imag e/134593)

Project Management *(cont.)*

Principal Investigator:

Marwood Ediger

Technology Maturity (TRL)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.1 Remote Sensing Instruments/Sensors
 └─ TX08.1.5 Lasers

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

